skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gupta, Misha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Transformer-based models are popular for time series forecasting and spatiotemporal prediction due to their ability to infer semantic correlations in long sequences. However, for human mobility prediction, temporal correlations, such as location patterns at the same time on previous days or weeks, are essential. While positional encodings help retain order, the self-attention mechanism causes a loss of temporal detail. To validate this claim, we used a simple approach in the 2nd ACM SIGSPATIAL Human Mobility Prediction Challenge, predicting locations based on past patterns weighted by reliability scores for missing data. Our simple approach was among the top 10 competitors and significantly outperformed the Transformer-based model that won the 2023 challenge. 
    more » « less
  2. Abstract The reduction of genetic diversity due to genetic hitchhiking is widely used to find past selective sweeps from sequencing data, but very little is known about how spatial structure affects hitchhiking. We use mathematical modeling and simulations to find the unfolded site frequency spectrum left by hitchhiking in the genomic region of a sweep in a population occupying a 1D range. For such populations, sweeps spread as Fisher waves, rather than logistically. We find that this leaves a characteristic 3-part site frequency spectrum at loci very close to the swept locus. Very low frequencies are dominated by recent mutations that occurred after the sweep and are unaffected by hitchhiking. At moderately low frequencies, there is a transition zone primarily composed of alleles that briefly “surfed” on the wave of the sweep before falling out of the wavefront, leaving a spectrum close to that expected in well-mixed populations. However, for moderate-to-high frequencies, there is a distinctive scaling regime of the site frequency spectrum produced by alleles that drifted to fixation in the wavefront and then were carried throughout the population. For loci slightly farther away from the swept locus on the genome, recombination is much more effective at restoring diversity in 1D populations than it is in well-mixed ones. We find that these signatures of space can be strong even in apparently well-mixed populations with negligible spatial genetic differentiation, suggesting that spatial structure may frequently distort the signatures of hitchhiking in natural populations. 
    more » « less